ar X iv : g r - qc / 0 11 20 53 v 3 2 6 A pr 2 00 2 Metric and Curvature in Gravitational Phase Space

نویسنده

  • John R. Klauder
چکیده

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quantization procedure known as Metrical Quantization, the first and most important ingredient is the specification of a suitable metric on classical phase space. Our choice of phase space metrics, guided by a recent study of Affine Quantum Gravity, leads to gravitational phase space geometries which possess constant scalar curvature and may be regarded as higher dimensional analogs of the Poincaré plane, which applies when n = 1. This result is important because phase spaces endowed with such symmetry lead naturally via the procedures of Metrical Quantization to acceptable Hilbert spaces of high dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : g r - qc / 0 11 20 53 v 2 2 1 D ec 2 00 1 Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

ar X iv : g r - qc / 0 11 20 53 v 1 2 0 D ec 2 00 1 Metric and Curvature in Gravitational Phase Space

At a fixed point in spacetime (say, x0), gravitational phase space consists of the space of symmetric matrices {F ab} [corresponding to the canonical momentum π(x0)] and of symmetric matrices {Gab} [corresponding to the canonical metric gab(x0)], where 1 ≤ a, b ≤ n, and, crucially, the matrix {Gab} is necessarily positive definite, i.e. ∑ uGabu b > 0 whenever ∑ (ua)2 > 0. In an alternative quan...

متن کامل

ar X iv : g r - qc / 0 51 11 52 v 1 2 9 N ov 2 00 5 Recent results on the search for continuous sources with LIGO and GEO 600 Alicia

An overview of the searches for continuous gravitational wave signals in LIGO and GEO 600 performed on different recent science runs and results are presented. This includes both searching for gravitational waves from known pulsars as well as blind searches over a wide parameter space.

متن کامل

ar X iv : g r - qc / 0 40 30 65 v 2 1 6 A ug 2 00 4 SOLVEGEOMETRY GRAVITATIONAL WAVES

In this paper we construct negatively curved Einstein spaces describing gravitational waves having a solvegeometry wave-front (i.e., the wave-fronts are solvable Lie groups equipped with a left-invariant metric). Using the Einstein solvmanifolds (i.e., solvable Lie groups considered as manifolds) constructed in a previous paper as a starting point, we show that there also exist solvegeometry gr...

متن کامل

ar X iv : g r - qc / 0 60 20 37 v 2 4 M ar 2 00 6 1 Gauge / gravity duality

We review the emergence of gravity from gauge theory in the context of AdS/CFT duality. We discuss the evidence for the duality, its lessons for gravitational physics, generalizations, and open questions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002